Circular Bonding COOCK

M5: Circularity potential of circular bonding technologies

Ive Vanderreydt, Stefanie De Smet, Emma Pals, Alexej Parchomenko, Wim Van Opstal

Circular bonding: a 'best of both worlds' solution

elements

(permanently)

Circularity opportunities of reversible bonding are situated in the inner (reuse, repair...) & outer (recycle) circles

Circular Strategies Potential of circular bonding Example Making the product redundant by abandoning its function or providing the same function with a radically different product Refuse The decision to shift from traditional adhesives to reversible adhesives impact the product design phase but not (necessarily) in a circular way given it is a mere Make product use more intensive (e.g. by Reversible bonding facilitates repair and Rethink replacement of an existing input sharing the product). refurbish strategies which enables (higher-Medium Reduce value) product-service systems (Rethink) Increasing efficiency in the production or Strategies further down the ladder are enabled by the use of reversible bonding use of the product by consuming few er (indirectly) igniting rethink, reduce and redesign initiatives Redesign natural resources and materials. Redesign the product to eliminate waste, w hile keeping the functionality intact Reuse a product multiple times for the Motor of a coffee machine was previously same purpose by the original owner or by glued in such that it could not be replaced Reuse new users with reversible bonding, the motor can be Reversible bonding = easier disassembly which facilitates / enables the repair taken out without damaging the rest of the Repair High and refurbishment of components that would previously be (irreversibly) Repair the product or offer repairs to machine prolong the product's useful life damaged by 'tearing' components apart Refurbish Carpet flooring can easily be (partly) Refurbish the product to bring it back into refurbished if reversible bonds are used the cycle through cosmetic alteration Disassemble components of a product that has become waste and rebuild the same If a device with a touchscreen breaks down, - Reversible bonding = easier disassembly which facilitates / enables the takeout Remanufacture product reversible bonding allows for the expensive High and reuse of (still) operational components in a similar or different product and fragile screen to be taken out and Repurpose Disassemble components of a product that (remanufacture, repurposing) remanufactured in new equipment has become waste and use in another product Process materials to recover/transform Smartphone recycling can be split in battery Easier disassembly allows for more advanced recycling methods and/or higher High Recycle (high quality) products from waste streams recycling (containing most rare metals) and value recycling outputs into basic material case recycling (mostlyplastics) Limited value-add of having used a reversible adhesive when materials are Burn materials to generate energy Low Recover n.a. burned to generate energy

The circularity potential of circular (de)bonding technologies is evaluated from three different perspectives

Functionality perspective

The preservation of functionality of the adhesive, substrates and particles when debonding

Environmental perspective

The effect on environmental impact due to different material use (compared to traditional bonding) and energy demand of the debonding process

Economic perspective

The price of (applying) debondable adhesives, investment costs required for debonding technologies and costs of post debonding cleaning

Potential of circular bonding

- Circular bonding (& debonding) allows the re-use of certain components and/or materials, thereby
 prolonging its lifespan. This could entail benefits on functionality, environmental and economic impacts.
- However, it is possible that the alternative bonding process and/or the debonding process could outweigh this benefit
- In the current analysis, the scope is limited to debonding technologies (and to potential impacts downstream of the respective product value chain it is applied in)
- Different debonding methods are possible. The analysis of these technologies from CE perspective is
 presented in the following table
 - Functionality: the preservation of functionality of the adhesive, substrates and particles
 - Environmental: the effect on environmental impact due to different material use (compared to traditional bonding) and energy demand of the debonding process
 - Economic: the price of debondable adhesives, investment costs needed for debonding technologies and costs of
 post debonding cleaning

Analysis of debonding technologies at lab scale from CE perspective

Disclaimer: Table provides only an overview - in specific cases deviations might occur

HIGH

MEDIUM LOW

+ Application dependent + Adhesive dependent

Scaling only applies within the same column

	Cool	Circularity assessment perspectives									
	Goal	Functionality			Enviro	nmental	Economic				
		Adhesive	Substrates	Particles	Materials	Energy input	Price of adhesive (OPEX)	Investment need (CAPEX)	Post debonding effort		
Induction		LOST	LARGELY PRESERVED heat conduction remov al of glue residue	LOST ferromagnetic particles for non-magnetic substrates	POTENTIAL ADDITION of conductive particles in case of non-magnetic applications	HEAT (f rom electricity)	LOW – MEDIUM conductiv e particles in case of non-magnetic applications	MEDIUM induction device required	MEDIUM remov al of glue residue		
ТЕР	SUBTRATE	LOST	LARGELY PRESERVED heat conduction removal of glue residue	LOST	ADDITION of TEP particles	HEAT (from electricity or any other source)	MEDIUM TEP mixed in adhesiv e	MEDIUM heating device required	MEDIUM remov al of glue residue		
UV		POTENTIALLY + PRESERVED	PRESERVED	NONE	SUBSTITUTION Different adhesive used	RADIATION (from light source powered by electricity)	HIGH specialized adhesive	MEDIUM UV curing device required	LOW clean debonding		
Electric	ESERVATION	LOST	PRESERVED	NONE Debonding of patches without rebonding	SUBSTITUTION Different adhesive used	ELECTRICITY	HIGH + specialized adhesive + conductive patches in case of insulative applications	LOW Power supply required	LOW clean debonding		
Convection	PRES	LOST LARGELY PRESERVED heat conduction removal of glue residue		NONE	NONE	HEAT (f rom electricity or other source)	LOW All adhesives	MEDIUM heating device required	MEDIUM remov al of glue residue		
Microwave		LOST	LARGELY PRESERVED removal of glue residue	NONE	NONE	ELECTRICITY	LOW All adhesives	MEDIUM industrial ov en required	MEDIUM remov al of glue residue		

CE assessments of debonding methods

- The debonding methods are ranked from low to high for each CE perspective. This
 ranking can only be considered within each column.
- The table is based exclusively on the debonding process itself, therefore it does not include the credits from the recovered substrate.
- Even though some debonding methods have less environmental and economic strains, we conclude that the benefits from substrate preservation outweigh the debonding demands for all CE perspectives

Holistic circularity assessments must consider the product (substrate), industrial & commercial context

- Adhesives typically make up only a minor part of total material use, total production efforts and total product cost
- Consequently, what counts in a sustainability or circularity evaluation of debonding is not (only) the adhesive or debonding method itself but the ability to disassemble with preservation of the substrate / product / component
- The table (in previous slide) is based exclusively on the debonding process itself, therefore it does not include the credits from the recovered substrate.
- We therefore strongly advice to evaluate circularity of debonding from a product perspective, preferably including the industrial and commercial/market context

Circular bonding for smartphone

Theoretical case study

Four different circular scenarios are investigated for the debonding of a smartphone battery...

Scenario	Description	Process chart			
No debonding + a recycling (baseline)	Smartphone is used for 2 years and then recycled (as a whole – given no debonding). An additional new smartphone is bought and again discarded and recycled after 2 years	$\square \xrightarrow{2y} \qquad \qquad$	Base case: Lifetime 2 years, no debonding Protection of proce composed proce composed asserbly Basendy / Basendy		
b Debonding & separate battery recycling	Smartphone is used for 2 years then debonded and battery and rest of the phone are recycled separately. An additional new smartphone is bought and again discarded and recycled after 2 years, with debonding and recycling the battery of the second phone as well.		Case 1: Lifetime 2 years, debonding of the battery + dedicated battery recycling		
C Debonding & exchange of battery	Smartphone is used for 2 years then the battery is replaced and the smartphone (with new battery) is used for another 2 years. The battery of the second phone is also debonded and recycled separately.		Case 2: Lifetime 2 years + 2 years additional lifetime after debonding and exchange of battery		
d Debonding & maintenance	Smartphone is used for 4 years (thanks to good maintenance). After 4 years, the battery is debonded and separately recycled.		Case 3: Lifetime 4 years, with debonding of battery after 4 years		

- Limited number of processes in the baseline system
- Reminder: After assembly, the preservation of functionality is indicated by const. RSE values
- Recycling able to reduce RSE to some degree, thereby reducing the distance to ideal system, but being closer to linear system

- Battery debonding is added
- Shredding leads to lower RSE increases due to debonded battery (here, 21m% of phone)
- Recycling efficiencies are identical, → lower RSE values achieved by avoiding functionality losses (debonding and dedicated bat.recycling)
- Case 1 shows better
 performance (further away
 from linear system, closer to
 resource effectiveness)

Materials Assembly Use Debond New Bat Rec.Bat Rec. Mat. Assembly Use Debond Shred Rec.

Debonding of battery and replacing with a new battery as separate steps that allows to reuse the old phone for another lifecycle

aste manao

Secondary raw naterials marke

- Changes in RSE earlier, but enable the reuse of the phone
- No phone shredding stage in the first lifecycle, keeps the system even closer to resource effectiveness

0.00

- No processes required to extend the phone lifetime for another +2 years
- Functionality stable over time
- Until 4 years the phone battery is debonded and treated as in other systems

Functionality graphs – different representation

Case 1 - LFT 2 years, bat.debonding + dedicated bat.recycling

Results – Temporal perspective

Goal & Scope LCA

- Cradle (raw materials) to grave (recycling to secondary material)
- Based on Ecoinvent database
- Calculation with EF method

Impact category	Unit		
Climate change	kg CO ₂ eq		
Ozone depletion	kg CFC11 eq		
Ionising radiation	kBq U-235 eq		
Photochemical ozone formation	kg NMVOC eq		
Particulate matter	disease inc.		
Human toxicity, non-cancer	CTUh		
Human toxicity, cancer	CTUh		
Acidification	mol H⁺ eq		
Eutrophication, freshwater	kg P eq		
Eutrophication, marine	kg N eq		
Eutrophication, terrestrial	mol N eq		
Ecotoxicity, freshwater	CTUe		
Land use	Pt		
Water use	m ³ depriv.		
Resource use, fossils	MJ		
Resource use, minerals and metals	kg Sb eq		

Results baseline

- Production of PCB: main contributor to all impact categories
- Use phase electricity: high impact on ionising radiation (due to nuclear energy in BE grid mix)

Scenarios – focused on Climate change (CO₂ eq.)

For a comprehensive economic evaluation of battery debonding for smartphones three perspectives should be looked into

Economic evaluation from three perspectives

3.3

MACRO / MARKET PERSPECTIVE

Boundary conditions such as state of the economy/ industry, maturity of the technology, regulation...

VALUE CHAIN PERSPECTIVE

Impact on value chain activities and partners from tier n suppliers to (end-) customers

3.2

PRODUCT & COMPANY PERSPECTIVE

vito.be

Key considerations with regard to strategy, cashflows, processes and internal stakeholders

Outcome of the lifecycle cost analysis shows that circular strategies in a lease scheme enabled by debonding are most profitable

2.1 Product & company level evaluation

Cashflow per Year		1	2	3	4
SC0	BASELINE (no debonding)	630.09€	0.55 €	630.09€	0.55€
(no debonding)	BASELINE + LEASE	130.09€	500.55€	130.09€	500.55€
	RECYCLE (+ debonding)	629.67€	-1.48€	629.67€	-1.48€
SC1	RECYCLE + LEASE	129.67€	498.52€	129.67€	498.52€
	REMANUFACTURE (battery replacement)	629.67€	36.98 €	0.00€	-1.48€
SC2 REMANUFACTURE + LEAS		129.67€	477.98€	500.00€	498.52€
	MAINTENANCE	629.67€	0.00€	0.00€	-1.48€
SC3	MAINTENANCE + LEASE	129.67€	500.00€	500.00€	498.52€

1. The sale price and lease price are assumed to be equal over a 2-year period

OBSERVATION 1: Bonding and debonding make up only a minor fraction of total smartphone lifecycle costs

2.1 Product & company level evaluation

OBSERVATION 2: In a linear system sale is more profitable than lease, when applying circular strategies the reverse is true

2.1 Product & company level evaluation

2

- In a linear system, the business as usual scenario comes out on top
- The cost of debonding outweighs the benefit of more efficient recycling in the recycling + debonding scenario
- Remanufacture scenario sees some revenues in year 2 from replacing the battery but this is small in comparison with the sale of a brand new smartphone
- Repair scenario in which smartphone is designed for reparation and maintenance leading to an extended lifetime also does not make sense from a (linear) business perspective

1

3

OBSERVATION 2: In a linear system sale is more profitable than lease, when applying circular strategies the reverse is true

2.1 Product & company level evaluation

Year

- If one decides to shift to product-service systems instead of linear sales, the combination with circular strategies clearly outperforms the linear system
- In these scenarios the customer keeps on using the perfectly working smartphone (albeit repaired or remanufactured) over the 4-year leasing period where in the linear scenario after 2 years a replacement is required

<u>OBSERVATION 3</u>: the benefit of separate battery recycling is offset by the additional cost of debonding – these strategies hence require incentivization

2.1 Product & company level evaluation

	Cashflow per Year	1	2	3	4	Total CF	Delta	%
SCO (no debonding)	BASELINE (no debonding)	630.09€	0.55€	630.09€	0.55€	1261.28 €	0.00€	0%
	BASELINE + LEASE	130.09€	500.55€	130.09€	500.55€	1261.28 €	0.00€	0%
661	RECYCLE (+ debonding)	629.67€	-1.48€	629.67€	-1.48€	1256.37 €	-4.91 €	0%
SC1	RECYCLE + LEASE	129.67€	498.52€	129.67€	498.52€	1256.37 €	-4.91 €	0%
SC2	REMANUFACTURE (battery replacement)	629.67€	36.98€	0.00€	-1.48€	665.16 €	-596.11 €	-47%
	REMANUFACTURE + LEASE	129.67€	477.98€	500.00€	498.52€	1606.16 €	344.89 €	27%
SC3	MAINTENANCE	629.67€	0.00€	0.00€	-1.48€	628.18 €	-633.09 €	-50%
	MAINTENANCE + LEASE	129.67€	500.00€	500.00€	498.52€	1628.18 €	366.91 €	29%

Key takeaways

Functionality

Environmental

Economic

- Higher circularity = higher preservation of functionality
- Higher recycling rates do not necessarily lead to higher functionality preservation
- Battery makes up only minor part of total impact (PCB is the environmental hotspot)
- Scenarios avoiding production of an additional smartphone (c & d) showing significant gains
- Bonding and debonding make up only a minor fraction of total lifecycle costs

In a linear system sale is more profitable

for circular strategies leasing

•

Trade-off between functionality and environmental gains and economic gains...

Summary smartphone case study results

Trade-off between functionality and environmental gains and economic gains solved by introducing circular business models

Summary smartphone case study results

